Synchronizing Finite Automata Lecture VI. Automata with Zero

Mikhail Volkov

Ural Federal University / Hunter College

1. Recap

Deterministic finite automata (DFA): $\mathscr{A} = \langle Q, \Sigma, \delta \rangle$.

- Q the state set
- \bullet Σ the input alphabet
- ullet $\delta: Q \times \Sigma \to Q$ the transition function

One can treat DFAs as unary algebras: each letter of the input alphabet defines a unary operation on the state set.

This allows us to apply to automata all standard algebraic notions, e.g., the notions of a subalgebra (subautomaton), a congruence, a quotient automaton.

Subautomata: if $\mathscr{A}=\langle Q,\Sigma,\delta\rangle$ is a DFA, and $S\subseteq Q$ is such that $\delta(s,a)\in S$ for all $s\in S$ and $a\in \Sigma$, consider the DFA $\mathscr{S}:=\langle S,\Sigma,\tau\rangle$ where $\tau=\sigma|_{S\times\Sigma}$. The latter equality means that $\tau(s,a):=\delta(s,a)$ for all $s\in S$ and $a\in \Sigma$.

Any such DFA is said to be a subautomaton of $\mathscr A$

One can treat DFAs as unary algebras: each letter of the input alphabet defines a unary operation on the state set.

This allows us to apply to automata all standard algebraic notions, e.g., the notions of a subalgebra (subautomaton), a congruence, a quotient automaton.

Subautomata: if $\mathscr{A}=\langle Q,\Sigma,\delta\rangle$ is a DFA, and $S\subseteq Q$ is such that $\delta(s,a)\in S$ for all $s\in S$ and $a\in \Sigma$, consider the DFA $\mathscr{S}:=\langle S,\Sigma,\tau\rangle$ where $\tau=\sigma|_{S\times\Sigma}$. The latter equality means that $\tau(s,a):=\delta(s,a)$ for all $s\in S$ and $a\in\Sigma$.

Any such DFA is said to be a subautomaton of \mathcal{A} .

One can treat DFAs as unary algebras: each letter of the input alphabet defines a unary operation on the state set.

This allows us to apply to automata all standard algebraic notions, e.g., the notions of a subalgebra (subautomaton), a congruence, a quotient automaton.

Subautomata: if $\mathscr{A}=\langle Q,\Sigma,\delta\rangle$ is a DFA, and $S\subseteq Q$ is such that $\delta(s,a)\in S$ for all $s\in S$ and $a\in \Sigma$, consider the DFA $\mathscr{S}:=\langle S,\Sigma,\tau\rangle$ where $\tau=\sigma|_{S\times\Sigma}$. The latter equality means that $\tau(s,a):=\delta(s,a)$ for all $s\in S$ and $a\in \Sigma$.

Any such DFA is said to be a subautomaton of \mathscr{A} .

One can treat DFAs as unary algebras: each letter of the input alphabet defines a unary operation on the state set.

This allows us to apply to automata all standard algebraic notions, e.g., the notions of a subalgebra (subautomaton), a congruence, a quotient automaton.

Subautomata: if $\mathscr{A}=\langle Q,\Sigma,\delta\rangle$ is a DFA, and $S\subseteq Q$ is such that $\delta(s,a)\in S$ for all $s\in S$ and $a\in \Sigma$, consider the DFA $\mathscr{S}:=\langle S,\Sigma,\tau\rangle$ where $\tau=\sigma|_{S\times\Sigma}$. The latter equality means that $\tau(s,a):=\delta(s,a)$ for all $s\in S$ and $a\in\Sigma$.

Any such DFA is said to be a subautomaton of \mathscr{A} .

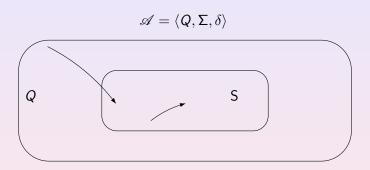
One can treat DFAs as unary algebras: each letter of the input alphabet defines a unary operation on the state set.

This allows us to apply to automata all standard algebraic notions, e.g., the notions of a subalgebra (subautomaton), a congruence, a quotient automaton.

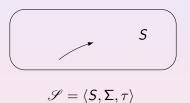
Subautomata: if $\mathscr{A}=\langle Q,\Sigma,\delta\rangle$ is a DFA, and $S\subseteq Q$ is such that $\delta(s,a)\in S$ for all $s\in S$ and $a\in \Sigma$, consider the DFA $\mathscr{S}:=\langle S,\Sigma,\tau\rangle$ where $\tau=\sigma|_{S\times\Sigma}$. The latter equality means that $\tau(s,a):=\delta(s,a)$ for all $s\in S$ and $a\in\Sigma$.

Any such DFA is said to be a subautomaton of \mathcal{A} .

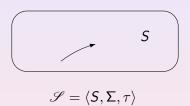
3. Subautomata



3. Subautomata



3. Subautomata



Exercise: show that a DFA has no proper subautomata iff it is strongly connected.

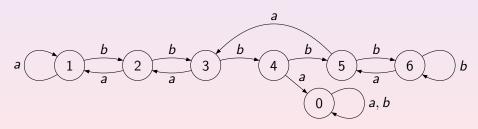
A singleton subautomaton is normally called a sink state or just a sink. At a sink state each letter must have a loop.

We study synchronizing automata and, clearly, a synchronizing automaton may have at most one sink.

A singleton subautomaton is normally called a sink state or just a sink. At a sink state each letter must have a loop. We study synchronizing automata and, clearly, a synchronizing automaton may have at most one sink.

A singleton subautomaton is normally called a sink state or just a sink. At a sink state each letter must have a loop. We study synchronizing automata and, clearly, a synchronizing automaton may have at most one sink.

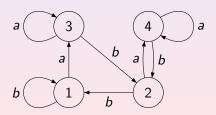
A singleton subautomaton is normally called a sink state or just a sink. At a sink state each letter must have a loop. We study synchronizing automata and, clearly, a synchronizing automaton may have at most one sink.



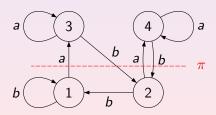
An equivalence π on the state set Q of a DFA $\mathscr{A} = \langle Q, \Sigma, \delta \rangle$ is called a congruence if $(p,q) \in \pi$ implies $(\delta(p,a), \delta(q,a)) \in \pi$ for all $p,q \in Q$ and all $a \in \Sigma$. For π being a congruence, $[q]_{\pi}$ is the π -class containing the state q.

An equivalence π on the state set Q of a DFA $\mathscr{A}=\langle Q,\Sigma,\delta\rangle$ is called a congruence if $(p,q)\in\pi$ implies $\big(\delta(p,a),\delta(q,a)\big)\in\pi$ for all $p,q\in Q$ and all $a\in\Sigma$. For π being a congruence, $[q]_\pi$ is the π -class containing the state q.

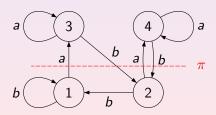
An equivalence π on the state set Q of a DFA $\mathscr{A}=\langle Q,\Sigma,\delta\rangle$ is called a congruence if $(p,q)\in\pi$ implies $\big(\delta(p,a),\delta(q,a)\big)\in\pi$ for all $p,q\in Q$ and all $a\in\Sigma$. For π being a congruence, $[q]_\pi$ is the π -class containing the state q.



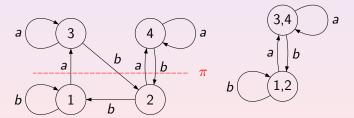
An equivalence π on the state set Q of a DFA $\mathscr{A}=\langle Q,\Sigma,\delta\rangle$ is called a congruence if $(p,q)\in\pi$ implies $\big(\delta(p,a),\delta(q,a)\big)\in\pi$ for all $p,q\in Q$ and all $a\in\Sigma$. For π being a congruence, $[q]_\pi$ is the π -class containing the state q.



An equivalence π on the state set Q of a DFA $\mathscr{A}=\langle Q,\Sigma,\delta\rangle$ is called a congruence if $(p,q)\in\pi$ implies $\big(\delta(p,a),\delta(q,a)\big)\in\pi$ for all $p,q\in Q$ and all $a\in\Sigma$. For π being a congruence, $[q]_\pi$ is the π -class containing the state q.



An equivalence π on the state set Q of a DFA $\mathscr{A}=\langle Q, \Sigma, \delta \rangle$ is called a congruence if $(p,q)\in \pi$ implies $\big(\delta(p,a),\delta(q,a)\big)\in \pi$ for all $p,q\in Q$ and all $a\in \Sigma$. For π being a congruence, $[q]_\pi$ is the π -class containing the state q.



Suppose that $\mathscr{A}=\langle Q,\Sigma,\delta\rangle$ is a DFA and $\mathscr{S}=\langle S,\Sigma,\tau\rangle$ is a subautomaton of \mathscr{A} .

The partition of Q into classes one of which is S and all others are singletons is a congruence of \mathscr{A} .

It is called the Rees congruence corresponding to $\mathscr S$ and is denoted by $\rho_{\mathscr S}$.

Clearly, in the quotient automaton $\mathcal{A}/\rho_{\mathcal{G}}$ the state S is a sink.

Suppose that $\mathscr{A}=\langle Q,\Sigma,\delta\rangle$ is a DFA and $\mathscr{S}=\langle S,\Sigma,\tau\rangle$ is a subautomaton of \mathscr{A} .

The partition of Q into classes one of which is S and all others are singletons is a congruence of \mathscr{A} .

It is called the Rees congruence corresponding to $\mathscr S$ and is denoted by $\rho_{\mathscr S}$.

Clearly, in the quotient automaton $\mathscr{A}/\rho_{\mathscr{S}}$ the state S is a sink.

Suppose that $\mathscr{A}=\langle Q,\Sigma,\delta\rangle$ is a DFA and $\mathscr{S}=\langle S,\Sigma,\tau\rangle$ is a subautomaton of \mathscr{A} .

The partition of Q into classes one of which is S and all others are singletons is a congruence of \mathscr{A} .

It is called the Rees congruence corresponding to ${\mathscr S}$ and is denoted by $\rho_{\mathscr S}.$

Clearly, in the quotient automaton $\mathcal{A}/\rho_{\mathcal{G}}$ the state S is a sink.

Suppose that $\mathscr{A}=\langle Q,\Sigma,\delta\rangle$ is a DFA and $\mathscr{S}=\langle S,\Sigma,\tau\rangle$ is a subautomaton of \mathscr{A} .

The partition of Q into classes one of which is S and all others are singletons is a congruence of \mathscr{A} .

It is called the Rees congruence corresponding to ${\mathscr S}$ and is denoted by $\rho_{\mathscr S}.$

Clearly, in the quotient automaton $\mathscr{A}/\rho_{\mathscr{S}}$ the state S is a sink.

7. Useful Observation

- 1. Any subautomaton of a synchronizing automaton is synchronizing, and every reset word for an automaton also serves as a reset word for any of its subautomata.
- 2. Any quotient of a synchronizing automaton is synchronizing, and every reset word for an automaton also serves as a reset word for any of its quotients.

7. Useful Observation

- 1. Any subautomaton of a synchronizing automaton is synchronizing, and every reset word for an automaton also serves as a reset word for any of its subautomata.
- 2. Any quotient of a synchronizing automaton is synchronizing, and every reset word for an automaton also serves as a reset word for any of its quotients.

8. A Reduction

Let C be any class of automata closed under taking subautomata and quotients, and let C_n stand for the class of all automata with n states in C.

Let $f: \mathbb{Z}^+ \to \mathbb{N}$ be any function such that

$$f(n) \ge f(n-m+1) + f(m)$$
 whenever $n \ge m \ge 1$.

If each synchronizing automaton in C_n which either is strongly connected or possesses a zero has a reset word of length f(n), then the same holds true for all synchronizing automata in C_n .

8. A Reduction

Let C be any class of automata closed under taking subautomata and quotients, and let C_n stand for the class of all automata with n states in C.

Let $f: \mathbb{Z}^+ \to \mathbb{N}$ be any function such that

$$f(n) \ge f(n-m+1) + f(m)$$
 whenever $n \ge m \ge 1$.

If each synchronizing automaton in C_n which either is strongly connected or possesses a zero has a reset word of length f(n), then the same holds true for all synchronizing automata in C_n .

8. A Reduction

Let C be any class of automata closed under taking subautomata and quotients, and let C_n stand for the class of all automata with n states in C.

Let $f: \mathbb{Z}^+ \to \mathbb{N}$ be any function such that

$$f(n) \ge f(n-m+1) + f(m)$$
 whenever $n \ge m \ge 1$.

If each synchronizing automaton in C_n which either is strongly connected or possesses a zero has a reset word of length f(n), then the same holds true for all synchronizing automata in C_n .

Let $\mathscr{A} = \langle Q, \Sigma, \delta \rangle$ be a synchronizing automaton in \mathbf{C}_n .

Consider the set S of all states to which the automaton $\mathscr A$ can be reset and let m=|S|.

If $q \in S$, then there exists a reset word $w \in \Sigma^*$ such that $Q.w = \{q\}$.

Then wa also is a reset word and $Q.wa = \{\delta(q, a)\}$ whence $\delta(q, a) \in S$.

This means that, restricting the transition function δ to $S \times \Sigma$, we get a subautomaton $\mathcal S$ with the state set S.

Since \mathscr{S} is synchronizing and strongly connected and since the class \mathbb{C} is closed under taking subautomata, we have $\mathscr{S} \in \mathbb{C}$. Hence, \mathscr{S} has a reset word v of length f(m).

Let $\mathscr{A}=\langle Q,\Sigma,\delta\rangle$ be a synchronizing automaton in \mathbf{C}_n . Consider the set S of all states to which the automaton \mathscr{A} can be reset and let m=|S|.

If $q \in S$, then there exists a reset word $w \in \Sigma^*$ such that $Q.w = \{q\}$.

Then wa also is a reset word and $Q.wa = \{\delta(q, a)\}$ whence $\delta(q, a) \in S$.

This means that, restricting the transition function δ to $S \times \Sigma$, we get a subautomaton $\mathcal S$ with the state set S.

Since $\mathscr S$ is synchronizing and strongly connected and since the class $\mathbf C$ is closed under taking subautomata, we have $\mathscr S\in\mathbf C$.

Hence, \mathcal{S} has a reset word v of length f(m).

Let $\mathscr{A}=\langle Q,\Sigma,\delta\rangle$ be a synchronizing automaton in \mathbf{C}_n . Consider the set S of all states to which the automaton \mathscr{A} can be reset and let m=|S|.

If $q \in S$, then there exists a reset word $w \in \Sigma^*$ such that $Q.w = \{q\}$.

Then wa also is a reset word and $Q.wa = \{\delta(q, a)\}$ whence $\delta(q, a) \in S$.

This means that, restricting the transition function δ to $S \times \Sigma$, we get a subautomaton $\mathcal S$ with the state set S.

Since \mathscr{S} is synchronizing and strongly connected and since the class \mathbf{C} is closed under taking subautomata, we have $\mathscr{S} \in \mathbf{C}$. Hence, \mathscr{S} has a reset word v of length f(m).

Let $\mathscr{A} = \langle Q, \Sigma, \delta \rangle$ be a synchronizing automaton in \mathbf{C}_n .

Consider the set S of all states to which the automaton $\mathscr A$ can be reset and let m=|S|.

If $q \in S$, then there exists a reset word $w \in \Sigma^*$ such that $Q.w = \{q\}$.

Then wa also is a reset word and $Q.wa = \{\delta(q, a)\}$ whence $\delta(q, a) \in S$.

This means that, restricting the transition function δ to $S \times \Sigma$, we get a subautomaton $\mathscr S$ with the state set S.

Since $\mathscr S$ is synchronizing and strongly connected and since the class $\mathbf C$ is closed under taking subautomata, we have $\mathscr S \in \mathbf C$. Hence, $\mathscr S$ has a reset word v of length f(m).

Let $\mathscr{A} = \langle Q, \Sigma, \delta \rangle$ be a synchronizing automaton in \mathbf{C}_n .

Consider the set S of all states to which the automaton $\mathscr A$ can be reset and let m=|S|.

If $q \in S$, then there exists a reset word $w \in \Sigma^*$ such that $Q.w = \{q\}$.

Then wa also is a reset word and $Q.wa = \{\delta(q, a)\}$ whence $\delta(q, a) \in S$.

This means that, restricting the transition function δ to $S \times \Sigma$, we get a subautomaton $\mathscr S$ with the state set S.

Since $\mathscr S$ is synchronizing and strongly connected and since the class $\mathbf C$ is closed under taking subautomata, we have $\mathscr S \in \mathbf C$.

Hence, $\mathscr S$ has a reset word v of length f(m).

Let $\mathscr{A} = \langle Q, \Sigma, \delta \rangle$ be a synchronizing automaton in \mathbf{C}_n .

Consider the set S of all states to which the automaton $\mathscr A$ can be reset and let m=|S|.

If $q \in S$, then there exists a reset word $w \in \Sigma^*$ such that $Q.w = \{q\}$.

Then wa also is a reset word and $Q.wa = \{\delta(q, a)\}$ whence $\delta(q, a) \in S$.

This means that, restricting the transition function δ to $S \times \Sigma$, we get a subautomaton $\mathscr S$ with the state set S.

Since $\mathscr S$ is synchronizing and strongly connected and since the class $\mathbf C$ is closed under taking subautomata, we have $\mathscr S\in \mathbf C$.

Hence, $\mathscr S$ has a reset word v of length f(m).

10. A Reduction: End of the Proof

Now consider the Rees congruence $\rho_{\mathscr{S}}$ of the automaton \mathscr{A} .

The quotient $\mathscr{A}/
ho_\mathscr{S}$ is synchronizing, has S as a zero, and has n-m+1 states.

Since the class \mathbf{C} is closed under taking quotients, we have $\mathcal{A}/\rho_{\mathscr{S}} \in \mathbf{C}$.

Hence $\mathscr{A}/\rho_{\mathscr{G}}$ has a reset word u of length f(n-m+1). Since $Q.u \subseteq S$ and S.v is a singleton, we conclude that also

Thus, uv is reset word for \mathscr{A} , and the length of this word does not exceed $f(n-m+1)+f(m) \leq f(n)$ according to the condition imposed on the function f.

It is easy to check that the function $f(n) = (n-1)^2$ satisfies the condition above.

We see that it suffices to prove the Černý conjecture for strongly connected automata and for automata zero.

Now consider the Rees congruence $\rho_{\mathscr{S}}$ of the automaton \mathscr{A} . The quotient $\mathscr{A}/\rho_{\mathscr{S}}$ is synchronizing, has S as a zero, and has n-m+1 states.

Since the class \mathbf{C} is closed under taking quotients, we have $\mathscr{A}/\rho_{\mathscr{I}} \in \mathbf{C}$.

Hence $\mathscr{A}/\rho_{\mathscr{S}}$ has a reset word u of length f(n-m+1). Since $Q.u \subseteq S$ and S.v is a singleton, we conclude that also $Q.uv \subseteq S.v$ is a singleton.

Thus, uv is reset word for \mathscr{A} , and the length of this word does not exceed $f(n-m+1)+f(m)\leq f(n)$ according to the condition imposed on the function f.

It is easy to check that the function $f(n) = (n-1)^2$ satisfies the condition above.

Now consider the Rees congruence $\rho_{\mathscr{S}}$ of the automaton \mathscr{A} .

The quotient $\mathscr{A}/\rho_{\mathscr{S}}$ is synchronizing, has S as a zero, and has n-m+1 states.

Since the class ${\bf C}$ is closed under taking quotients, we have $\mathscr{A}/\rho_{\mathscr{S}}\in{\bf C}.$

Hence $\mathcal{A}/\rho_{\mathscr{S}}$ has a reset word u of length f(n-m+1). Since $Q.u \subseteq S$ and S.v is a singleton, we conclude that also $Q.uv \subseteq S.v$ is a singleton.

Thus, uv is reset word for \mathscr{A} , and the length of this word does not exceed $f(n-m+1)+f(m)\leq f(n)$ according to the condition imposed on the function f.

It is easy to check that the function $f(n) = (n-1)^2$ satisfies the condition above.

Now consider the Rees congruence $\rho_{\mathscr{S}}$ of the automaton \mathscr{A} .

The quotient $\mathscr{A}/\rho_{\mathscr{S}}$ is synchronizing, has S as a zero, and has n-m+1 states.

Since the class ${\bf C}$ is closed under taking quotients, we have ${\mathscr A}/\rho_{\mathscr S}\in{\bf C}.$

Hence $\mathscr{A}/\rho_{\mathscr{S}}$ has a reset word u of length f(n-m+1).

Since $Q.u \subseteq S$ and S.v is a singleton, we conclude that also $Q.uv \subseteq S.v$ is a singleton.

Thus, uv is reset word for \mathscr{A} , and the length of this word does not exceed $f(n-m+1)+f(m)\leq f(n)$ according to the condition imposed on the function f.

It is easy to check that the function $f(n) = (n-1)^2$ satisfies the condition above.

Now consider the Rees congruence $\rho_{\mathscr{S}}$ of the automaton \mathscr{A} .

The quotient $\mathscr{A}/\rho_{\mathscr{S}}$ is synchronizing, has S as a zero, and has n-m+1 states.

Since the class ${\bf C}$ is closed under taking quotients, we have ${\mathscr A}/\rho_{\mathscr S}\in{\bf C}.$

Hence $\mathscr{A}/\rho_{\mathscr{S}}$ has a reset word u of length f(n-m+1). Since $Q.u \subseteq S$ and S.v is a singleton, we conclude that also $Q.uv \subseteq S.v$ is a singleton.

Thus, uv is reset word for \mathscr{A} , and the length of this word does not exceed $f(n-m+1)+f(m)\leq f(n)$ according to the condition imposed on the function f.

It is easy to check that the function $f(n) = (n-1)^2$ satisfies the condition above.

Now consider the Rees congruence $\rho_{\mathscr{S}}$ of the automaton \mathscr{A} .

The quotient $\mathscr{A}/\rho_{\mathscr{S}}$ is synchronizing, has S as a zero, and has n-m+1 states.

Since the class ${\bf C}$ is closed under taking quotients, we have ${\mathscr A}/\rho_{\mathscr S}\in{\bf C}.$

Hence $\mathscr{A}/\rho_{\mathscr{S}}$ has a reset word u of length f(n-m+1).

Since $Q.u \subseteq S$ and S.v is a singleton, we conclude that also $Q.uv \subseteq S.v$ is a singleton.

Thus, uv is reset word for \mathscr{A} , and the length of this word does not exceed $f(n-m+1)+f(m)\leq f(n)$ according to the condition imposed on the function f.

It is easy to check that the function $f(n) = (n-1)^2$ satisfies the condition above.

Now consider the Rees congruence $\rho_{\mathscr{S}}$ of the automaton \mathscr{A} .

The quotient $\mathscr{A}/\rho_{\mathscr{S}}$ is synchronizing, has S as a zero, and has n-m+1 states.

Since the class ${\bf C}$ is closed under taking quotients, we have ${\mathscr A}/\rho_{\mathscr S}\in{\bf C}.$

Hence $\mathscr{A}/\rho_{\mathscr{S}}$ has a reset word u of length f(n-m+1).

Since $Q.u \subseteq S$ and S.v is a singleton, we conclude that also $Q.uv \subseteq S.v$ is a singleton.

Thus, uv is reset word for \mathscr{A} , and the length of this word does not exceed $f(n-m+1)+f(m)\leq f(n)$ according to the condition imposed on the function f.

It is easy to check that the function $f(n) = (n-1)^2$ satisfies the condition above.

Now consider the Rees congruence $\rho_{\mathscr{S}}$ of the automaton \mathscr{A} .

The quotient $\mathscr{A}/\rho_{\mathscr{S}}$ is synchronizing, has S as a zero, and has n-m+1 states.

Since the class ${\bf C}$ is closed under taking quotients, we have ${\mathscr A}/\rho_{\mathscr S}\in{\bf C}.$

Hence $\mathscr{A}/\rho_{\mathscr{S}}$ has a reset word u of length f(n-m+1).

Since $Q.u \subseteq S$ and S.v is a singleton, we conclude that also $Q.uv \subseteq S.v$ is a singleton.

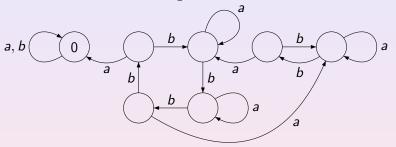
Thus, uv is reset word for \mathscr{A} , and the length of this word does not exceed $f(n-m+1)+f(m)\leq f(n)$ according to the condition imposed on the function f.

It is easy to check that the function $f(n) = (n-1)^2$ satisfies the condition above.

If a synchronizing automaton with k states has a zero, then it has a reset word of length $\leq \frac{k(k-1)}{2}$.

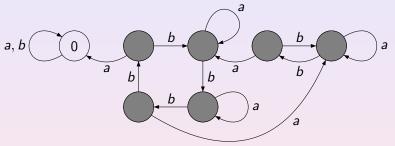
The algorithm makes at most k-1 steps and the length of the segment added in the step when t states still hold coins $(k-1 \ge t \ge 1)$ is at most k-t. The total length is (k-1) = k(k-1)

If a synchronizing automaton with k states has a zero, then it has a reset word of length $\leq \frac{k(k-1)}{2}$.



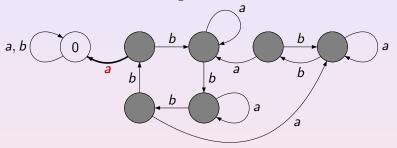
The algorithm makes at most k-1 steps and the length of the segment added in the step when t states still hold coins $(k-1 \ge t \ge 1)$ is at most k-t. The total length is (k-1) = k(k-1)

If a synchronizing automaton with k states has a zero, then it has a reset word of length $\leq \frac{k(k-1)}{2}$.



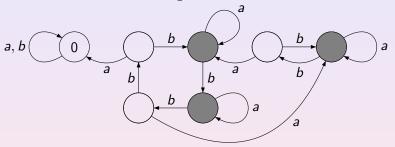
The algorithm makes at most k-1 steps and the length of the segment added in the step when t states still hold coins $(k-1 \ge t \ge 1)$ is at most k-t. The total length is $(k-1 + 2 + \dots + (k-1) = \frac{k(k-1)}{2})$

If a synchronizing automaton with k states has a zero, then it has a reset word of length $\leq \frac{k(k-1)}{2}$.



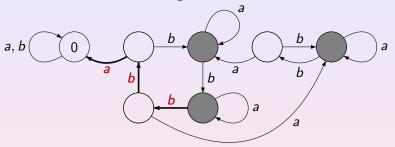
The algorithm makes at most k-1 steps and the length of the segment added in the step when t states still hold coins $(k-1 \ge t \ge 1)$ is at most k-t. The total length is (k-1) = k(k-1)

If a synchronizing automaton with k states has a zero, then it has a reset word of length $\leq \frac{k(k-1)}{2}$.



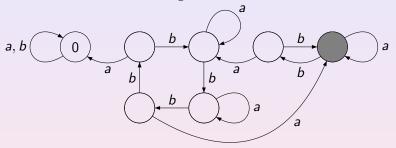
The algorithm makes at most k-1 steps and the length of the segment added in the step when t states still hold coins $(k-1 \ge t \ge 1)$ is at most k-t. The total length is $(k-1 + 2 + \dots + (k-1) = \frac{k(k-1)}{2})$

If a synchronizing automaton with k states has a zero, then it has a reset word of length $\leq \frac{k(k-1)}{2}$.



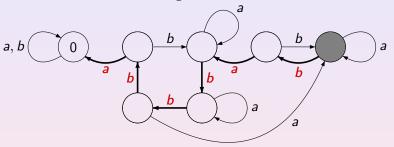
The algorithm makes at most k-1 steps and the length of the segment added in the step when t states still hold coins $(k-1 \ge t \ge 1)$ is at most k-t. The total length is $\leq 1+2+\cdots+(k-1)=\frac{k(k-1)}{2}$.

If a synchronizing automaton with k states has a zero, then it has a reset word of length $\leq \frac{k(k-1)}{2}$.



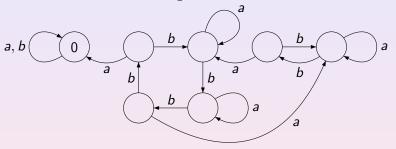
The algorithm makes at most k-1 steps and the length of the segment added in the step when t states still hold coins $(k-1 \ge t \ge 1)$ is at most k-t. The total length is $\le 1+2+\cdots+(k-1)=\frac{k(k-1)}{2}$.

If a synchronizing automaton with k states has a zero, then it has a reset word of length $\leq \frac{k(k-1)}{2}$.



The algorithm makes at most k-1 steps and the length of the segment added in the step when t states still hold coins $(k-1\geq t\geq 1)$ is at most k-t. The total length is $\leq 1+2+\cdots+(k-1)=\frac{k(k-1)}{2}$.

If a synchronizing automaton with k states has a zero, then it has a reset word of length $\leq \frac{k(k-1)}{2}$.



The algorithm makes at most k-1 steps and the length of the segment added in the step when t states still hold coins $(k-1\geq t\geq 1)$ is at most k-t. The total length is $\leq 1+2+\cdots+(k-1)=\frac{k(k-1)}{2}$.