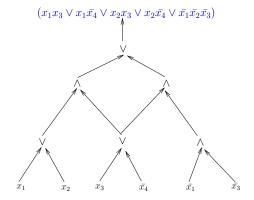
Small Width Arithmetic Circuits

Meena Mahajan. joint work with Raghavendra Rao B.V

October 1, 2008

Boolean Circuits



Boolean Circuit: Formal definition

- Directed acyclic graph
- Internal nodes labeled with $\{\lor, \land, \neg\}$.
- Leaves labeled with $\{0, 1, x_1, \dots, x_n\}$.
- A designated output node, of out-degree zero.
- Circuit inputs $x_i \in \{0,1\}$

Resource Measures:

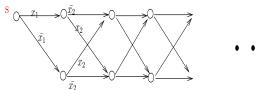
- fan in (fan out) of a node: its in-degree (out-degree)
- size number of internal nodes
- depth length of longest path from output node to input node
- width maximum number of nodes at any particular level

- P: Polynomial-size uniform circuits.
- NC: Polynomial-size Poly-logarithmic depth circuits. short, fat (named after Nicholas Pippenger.) algorithms implementable in parallel polylog time. NC^{i} : polynomial size $O((\log n)^{i})$ depth.
- NC¹: parity of n bits, sorting n numbers, evaluating a boolean formula, membership in any fixed regular language.
- NC²: computing the determinant of an integer matrix, membership in fixed context-free language (CFL).

- P: Polynomial-size uniform circuits.
- SC: Polynomial-size Poly-logarithmic width circuits. tall, skinny (named after Steve Cook). algorithms needing poly time and polylog space. SC^{i} : polynomial size $O((\log n)^{i})$ width.
- SC^0 : Known to be same as NC^1 ; hence parity of *n* bits. sorting *n* numbers, evaluating a boolean formula, membership in any fixed regular language.
- SC1: Known to be same as log-space; hence undirected graph connectivity, planarity testing, isomorphism testing for trees and planar graphs.
- SC²: membership in any fixed deterministic CFL, (PLoSS) any randomized logspace algorithm.

Branching programs

A width-2 branching program for parity



BWBP: Bounded Width Branching Programs (of poly size). Known to be same as NC^1 .

BP: Poly size Branching Programs. Known to be same as nondeterministic logspace.

Formulae

- Formula: A circuit where every node has out-degree at most 1. (The underlying graph is a forest.)
- Every circuit C has an equivalent formula F of the same depth, but F may be much (exponentially) bigger.
- NC¹ circuits have equivalent poly-size log-depth formulae.
- NC¹ circuits also have equivalent poly-size log-width formulae.
- Every poly-size formula has an equivalent NC¹ circuit.

A set of Equivalences

- BWBP \subseteq NC¹ (divide-and-conquer *a la* Savitch)
- $\blacksquare \ \mathsf{BWBP} \subseteq \mathsf{SC^0} \ (\mathsf{folklore})$
- $SC^0 \subseteq NC^1 \subseteq BWBP$ (Barrington)
- $NC^1 \subseteq F$ (folklore)
- LWF \subseteq F \subseteq NC¹ (Spira)
- $NC^1 \subseteq LWF$ (Istrail, Zilkovich)

Thus NC¹, BWBP, SC⁰, F, LWF are all equivalent.

Counting Classes

Arithmetizing a Boolean circuit:

- Move all negations to the leaves. (de Morgan's laws)
- Replace
 - \blacksquare every \land gate by a \times gate;
 - \blacksquare every \lor gate by a + gate;
 - leaf-level negation $\overline{x_i}$ by $1 x_i$.

An arithmetic circuit

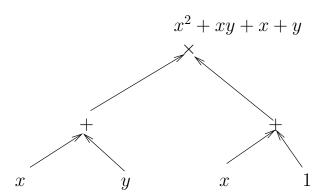


Figure: An arithmetic circuit, computing the polynomial $x^2 + xy + x + y$

Arithmetic Circuit Classes

Arithmetic Circuits: Similar to counting classes.

- Computation over arbitrary rings \mathbb{K} .
- Internal nodes labeled \times or +.
- Leaves labeled by 0, 1, -1, or x_i for $i \in \{1, ..., n\}$.
- \blacksquare x_i can take any value in \mathbb{K} .

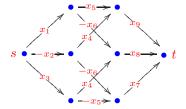
Arithmetic Branching Program

- Edges of the BP labeled by 0, 1, -1 or x_i for $i \in \{1, ..., n\}$.
- Weight of a path: product of weights of labels of edges on the path
- Function computed: sum of weights of all $s \longrightarrow t$ paths.

Arithmetic Branching Program: An Example

An arithmetic branching program to compute the determinant of the matrix

$$\begin{bmatrix} x_1 & x_2 & x_3 \\ x_4 & x_5 & x_6 \\ x_7 & x_8 & x_9 \end{bmatrix}$$

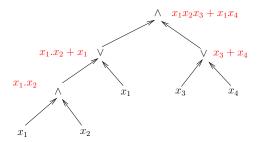


Relationships among arithmetic classes?

- Not all equivalences carry over to arithmetizations.
- In particular, a-SC⁰ seems too powerful:
- A width two circuit can compute super-exponential values requiring super-polynomial bits in a binary representation:

We need a resource measure that restricts circuit output to feasible values.

Degree of a Circuit: an Example



Degree of a Circuit

- Circuit degree: roughly speaking, algebraic degree of associated polynomial.
- Caveats:
 - **1** constants (0,1,-1) at leaves are replaced by new variables.
 - 2 cancellations not accounted for. degree of $(x_1x_2 + x_3) + (x_4 - x_1x_2)$ is 2, not 1.
- Recursive definition:
 - \blacksquare degree of leaf = 1,
 - degree of \lor or + gate = max degree of children,
 - degree of \land or \times gate = sum of degrees of children.

- Define small SC, denoted sSC: $sSC^i = SC^i$ circuit of polynomial degree
- sSC is in NC; whatever the width. (Venkateswaran)
 (In fact, any poly-size poly-degree circuit has an equivalent circuit in NC.)
- BWBP \subseteq sSC⁰ \subseteq SC⁰ \subseteq BWBP i.e. degree bound not a restriction for SC⁰.
- $sSC^0 \subseteq sSC^1 \subseteq SC^1$ i.e. sSC^1 is sandwiched between NC^1 and L.

- Boolean: $sSC^0 = NC^1$
- Arithmetic: a-NC¹ = a-BWBP ⊆ a-sSC⁰ Ben-Or, Cleve; Caussinius, McKenzie, Therien, Vollmer
- Arithmetic: $a-F = a-NC^1$ Brent
- Open: Is a-sSC⁰ contained in a-NC¹? That is, can tall skinny circuits be converted to equivalent short fat ones? Can we perform depth-reduction?
- In what follows: a restricted setting where we can ...

Multilinear Circuits

- A polynomial $f \in \mathbb{K}[x_1, ..., x_n]$ is multilinear if the degree of each variable is bounded by 1.
- A circuit is multilinear if every gate computes a multilinear polynomial.
- In a syntactic multilinear circuit, the left child and right child of every × gates contain disjoint sets of variables.

Remark: All multilinear formulae have equivalent syntactic multilinear formulae, though the construction is non-uniform.

$$ma-F = sma-F$$

Figure: A multilinear circuit, which is not syntactic multilinear

y

x

Depth-Reduction for sma-sSC⁰

- Any syntactic multilinear formula for computing the Permanent or the Determinant requires super-polynomial size [Raz 2004]
- Syntactic multilinear circuits are strictly more powerful than syntactic multilinear formula; sma-F \subset sma-NC². [Raz 2004]

Question 1: What is the relationship among the Syntactic Multilinear arithmetic circuits around NC1? $sma-BWBP \subseteq sma-sSC^0$.

 $sma-BWBP \subseteq sma-NC^1 = sma-F$.

Question 2: Can width bounded syntactic multilinear circuits be depth reduced?

Is sma-sSC⁰ in sma-NC¹?

Theorem

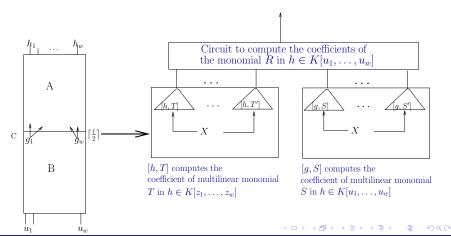
For any syntactic multilinear arithmetic circuit of width w, depth l and degree d, there is an equivalent bounded fan-in arithmetic circuit of depth $O(w(\log l + \log d))$ and size $O((ld)^w)$

In English: syntactic multilinear tall thin circuits can be depth-reduced.

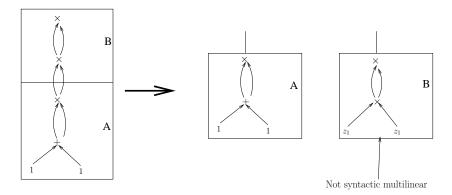
Note: The depth-reduced circuit need not be syntactic multilinear.

Proof sketch

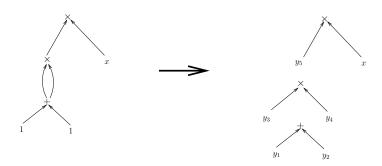
Idea: Divide and conquer



A mind block



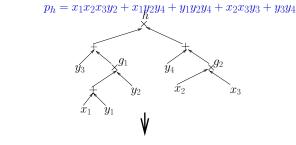
■ Introduce new variables for each of the wires carrying only constants.

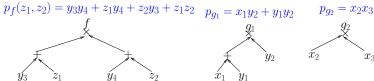


- Introduce new variables for each of the wires carrying only constants.
- The resulting circuit is syntactic multilinear in $X \cup Y$

Steps:

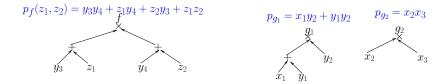
■ Break the circuit at depth 1/2 into sub-circuits A, B

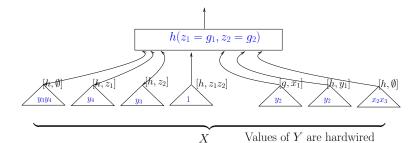




Steps:

- Break the circuit at depth I/2 into sub-circuits A, B
- Inductively build circuits which compute the coefficients of polynomials computed by A and B





Depth-Reduction for sma-sSC⁰

Main theorem

Hence we have,

Theorem

For any syntactic multilinear arithmetic circuit of width w, depth l and degree d, there is an equivalent bounded fan-in arithmetic circuit of depth $O(w(\log l + \log d))$ and size $O((ld)^w)$

Corollary: sma-sSC⁰ \subseteq a-NC¹. poly-size constant width \longrightarrow poly-size log depth

Paradoxical Improvement

A recent modification by Jansen makes the depth-reduced circuit also syntactic multilinear; i.e. sma-sSC 0 \subseteq sma-NC 1 .

This is unexpected, because without the sma- restriction, not only is such a containment open, but in fact exactly the converse containment is known to hold: $a-NC^1 \subset a-sSC^0$.

Open Questions

- Depth reduction for general constant width arithmetic circuits?
- Can the constructions be made uniform?
- Can we separate sma-BWBP from sma-BP?