Elena V. Pribavkina, Emanuele Rodaro

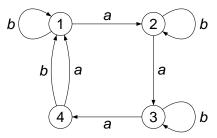
Ural State University, Ekaterinburg, Russia Università dell'Insubria, Italy

October 6, 2008

Synchronizing Automata

- ▶ A deterministic finite automaton (DFA) is a triple $\mathscr{A} = \langle Q, \Sigma, \delta \rangle$.
- ▶ A DFA $\mathscr{A} = \langle Q, \Sigma, \delta \rangle$ is called *synchronizing* if there is a word w whose action *resets* \mathscr{A} , that is, leaves the automaton in one particular state no matter which state in Q it started at: $\delta(q, w) = \delta(q', w)$ for all $q, q' \in Q$. $|Q \cdot w| = 1$. Here $Q \cdot v = \{\delta(q, v) \mid q \in Q\}$.
- Any such w is called synchronizing or reset word for A.

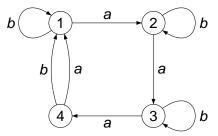
Synchronizing Automata – An Example



A reset word is *ba*³*ba*³*b*. Applying this word at any state brings the automaton to the state 1.

In fact it is the shortest reset word for this automaton.

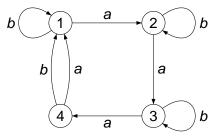
Synchronizing Automata – An Example



A reset word is ba^3ba^3b . Applying this word at any state brings the automaton to the state 1.

In fact it is the shortest reset word for this automaton.

Synchronizing Automata – An Example



A reset word is ba^3ba^3b . Applying this word at any state brings the automaton to the state 1.

In fact it is the shortest reset word for this automaton.

Černý's Conjecture

Suppose a synchronizing automaton has *n* states. What is the length of the shortest synchronizing word?

In 1964 Jan Černý found an infinite series of n-state reset automata whose shortest reset word has length $(n-1)^2$.

He conjectured that this is the worst case, that is

Any synchronizing automaton with n states has a reset word of length at most $(n-1)^2$.

Černý's conjecture has been proved for many particular classes of synchronizing automata:

automata with zero, monotonic automata, aperiodic automata, automata whose underlying digraph is Eulerian, etc.

A New Class of Synchronizing Automata

- We introduce and characterize a new class of synchronizing automata
- ▶ We show that the length of the shortest reset word for any n-state automaton in this class is a linear function of n.
- We also study the complexity of determining whether a given synchronizing automaton belongs to this class.

A New Class of Synchronizing Automata

- We introduce and characterize a new class of synchronizing automata
- ▶ We show that the length of the shortest reset word for any n-state automaton in this class is a linear function of n.
- We also study the complexity of determining whether a given synchronizing automaton belongs to this class.

A New Class of Synchronizing Automata

- We introduce and characterize a new class of synchronizing automata
- We show that the length of the shortest reset word for any n-state automaton in this class is a linear function of n.
- We also study the complexity of determining whether a given synchronizing automaton belongs to this class.

Minimal Synchronizing Words

Let $\mathscr{A}=\langle \mathsf{Q}, \mathsf{\Sigma}, \delta \rangle$ be a synchronizing DFA. $\mathscr{L}(\mathscr{A})$ denotes the language of all words synchronizing \mathscr{A} .

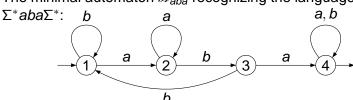
A synchronizing word v is said to be *minimal* if none of its proper prefixes nor suffixes is synchronizing.

The language $\mathcal{L}(\mathcal{A})$ of all synchronizing words is a two-sided ideal generated by the language of all minimal synchronizing words:

$$\mathscr{L}(\mathscr{A}) = \Sigma^* \mathscr{L}_{min}(\mathscr{A}) \Sigma^*.$$

We consider the class **FG** of synchronizing automata whose language of minimal synchronizing words is finite. Such automata are referred to as *finitely generated synchronizing automata*.

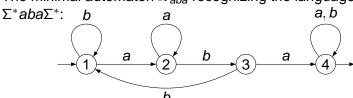
The minimal automaton \mathcal{A}_{aba} recognizing the language



$$\mathcal{L}(\mathcal{A}_{aba}) = \Sigma^* aba \Sigma^* \Rightarrow \mathcal{L}_{min}(\mathcal{A}_{aba}) = \{aba\} \Rightarrow \mathcal{A}_{aba} \in \mathbf{FG}.$$
 For any word $w \in \Sigma^* \mathscr{A}_w \in \mathbf{FG}.$

 \mathcal{A}_w has n = |w| + 1 states, hence its shortest synchronizing word has length n - 1.

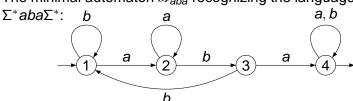
The minimal automaton \mathcal{A}_{aba} recognizing the language



$$\mathscr{L}(\mathscr{A}_{aba}) = \Sigma^* aba \Sigma^* \Rightarrow \mathscr{L}_{min}(\mathscr{A}_{aba}) = \{aba\} \Rightarrow \mathscr{A}_{aba} \in \mathbf{FG}.$$
 For any word $w \in \Sigma^* \mathscr{A}_w \in \mathbf{FG}.$

 \mathscr{A}_w has n = |w| + 1 states, hence its shortest synchronizing word has length n - 1.

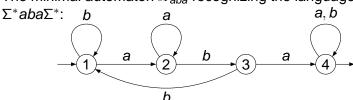
The minimal automaton \mathcal{A}_{aba} recognizing the language



$$\mathscr{L}(\mathscr{A}_{aba}) = \Sigma^* aba\Sigma^* \Rightarrow \mathscr{L}_{min}(\mathscr{A}_{aba}) = \{aba\} \Rightarrow \mathscr{A}_{aba} \in \mathbf{FG}.$$
 For any word $w \in \Sigma^* \mathscr{A}_w \in \mathbf{FG}.$

 \mathcal{A}_w has n = |w| + 1 states, hence its shortest synchronizing word has length n - 1.

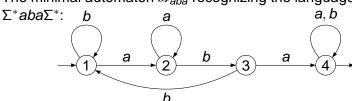
The minimal automaton \mathcal{A}_{aba} recognizing the language



$$\mathscr{L}(\mathscr{A}_{aba}) = \Sigma^* aba \Sigma^* \Rightarrow \mathscr{L}_{min}(\mathscr{A}_{aba}) = \{aba\} \Rightarrow \mathscr{A}_{aba} \in \mathbf{FG}.$$
 For any word $w \in \Sigma^* \mathscr{A}_w \in \mathbf{FG}.$

 \mathscr{A}_w has n = |w| + 1 states, hence its shortest synchronizing word has length n - 1.

The minimal automaton \mathcal{A}_{aba} recognizing the language



$$\mathscr{L}(\mathscr{A}_{aba}) = \Sigma^* aba\Sigma^* \Rightarrow \mathscr{L}_{min}(\mathscr{A}_{aba}) = \{aba\} \Rightarrow \mathscr{A}_{aba} \in \mathbf{FG}.$$
 For any word $w \in \Sigma^* \mathscr{A}_w \in \mathbf{FG}.$

 \mathcal{A}_w has n = |w| + 1 states, hence its shortest synchronizing word has length n - 1.

Characterization of FG

- ▶ $T \subseteq Q$ is *reachable* if there is $v \in \Sigma^*$ with $T = Q \cdot v$.
- \triangleright S(T) is the set of all words *stabilizing T*:

$$\mathcal{S}(T) = \{ w \in \Sigma^* \mid T \cdot w = T \}$$

▶ By $\mathcal{R}(T)$ we denote the set of all words bringing T to a singleton:

$$\mathcal{R}(T) = \{ w \in \Sigma^* \mid |T \cdot w| = 1 \}$$

▶ Let $w \in \Sigma^*$, by $m(w) \subseteq Q$ we denote the maximal fixed set with respect to w.

Theorem 1

A synchronizing automaton $\mathscr A$ is in **FG** iff for any reachable subset $T\subseteq Q$ with 1<|T|<|Q|, for each $w\in \mathcal S(T)$

$$\mathcal{R}(T) = \mathcal{R}(m(w))$$

Characterization of FG

- ▶ $T \subseteq Q$ is *reachable* if there is $v \in \Sigma^*$ with $T = Q \cdot v$.
- \triangleright S(T) is the set of all words *stabilizing T*:

$$\mathcal{S}(T) = \{ w \in \Sigma^* \mid T \cdot w = T \}$$

▶ By R(T) we denote the set of all words bringing T to a singleton:

$$\mathcal{R}(T) = \{ w \in \Sigma^* \mid |T \cdot w| = 1 \}$$

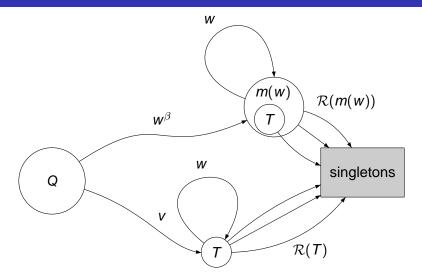
▶ Let $w \in \Sigma^*$, by $m(w) \subseteq Q$ we denote the maximal fixed set with respect to w.

Theorem 1

A synchronizing automaton \mathscr{A} is in **FG** iff for any reachable subset $T \subseteq Q$ with 1 < |T| < |Q|, for each $w \in \mathcal{S}(T)$

$$\mathcal{R}(T) = \mathcal{R}(m(w))$$

Visualization



Corollary

Let $\mathscr{A}=\langle Q,\Sigma,\delta\rangle$ be a synchronizing automaton such that there is a letter $a\in\Sigma$ with Q. a=Q and there are no letters $b\in\Sigma$ with |Q. b|=1. Then $\mathscr{L}_{min}(\mathscr{A})$ is infinite.

Theorem 2

Let $\mathscr{A} = \langle Q, \Sigma, \delta \rangle$ be a finitely generated synchronizing automaton with n states. There is a synchronizing word of length at most 3n - 5.

Remark

Take any letter $a \in \Sigma$, then either a^k or $a^k \tau a^k$ is synchronizing $(k \le n - |m(a)| \text{ and } |\tau| \le n - 1)$.

Corollary

Let $\mathscr{A}=\langle Q,\Sigma,\delta\rangle$ be a synchronizing automaton such that there is a letter $a\in\Sigma$ with Q. a=Q and there are no letters $b\in\Sigma$ with |Q. b|=1. Then $\mathscr{L}_{min}(\mathscr{A})$ is infinite.

Theorem 2

Let $\mathscr{A} = \langle \mathbf{Q}, \Sigma, \delta \rangle$ be a finitely generated synchronizing automaton with n states. There is a synchronizing word of length at most 3n - 5.

Remark

Take any letter $a \in \Sigma$, then either a^k or $a^k \tau a^k$ is synchronizing $(k \le n - |m(a)| \text{ and } |\tau| \le n - 1)$.

Corollary

Let $\mathscr{A}=\langle Q,\Sigma,\delta\rangle$ be a synchronizing automaton such that there is a letter $a\in\Sigma$ with Q. a=Q and there are no letters $b\in\Sigma$ with |Q. b|=1. Then $\mathscr{L}_{min}(\mathscr{A})$ is infinite.

Theorem 2

Let $\mathscr{A} = \langle Q, \Sigma, \delta \rangle$ be a finitely generated synchronizing automaton with n states. There is a synchronizing word of length at most 3n - 5.

Remark

Take any letter $a \in \Sigma$, then either a^k or $a^k \tau a^k$ is synchronizing $(k \le n - |m(a)| \text{ and } |\tau| \le n - 1)$.

Decidability of FINITENESS Problem

FINITENESS

Input: A synchronizing DFA $\mathscr{A} = \langle Q, \Sigma, \delta \rangle$. *Question*: Is \mathscr{A} finitely generated?

FINITENESS Problem is decidable:

- $\blacktriangleright \ \mathcal{L}_{min}(\mathscr{A}) = \mathscr{L}(\mathscr{A}) \setminus (\Sigma \mathscr{L}(\mathscr{A}) \cup \mathscr{L}(\mathscr{A})\Sigma).$
- ▶ The language $\mathcal{L}(\mathscr{A})$ is regular (it is recognized by the power automaton $\mathcal{P}(\mathscr{A})$ with Q as an initial state and singletons as terminal ones).
- ▶ If \mathscr{A} has n states, then $\mathscr{P}(\mathscr{A})$ has at most $2^n 1$ states.
- ▶ $\mathcal{L}_{min}(A)$ is recognized by an automaton with $O(2^{3n})$ states, thus checking the finiteness takes $O(2^{6n})$.

Decidability of FINITENESS Problem

FINITENESS

Input: A synchronizing DFA $\mathscr{A} = \langle Q, \Sigma, \delta \rangle$. Question: Is \mathscr{A} finitely generated?

FINITENESS Problem is decidable:

- $\blacktriangleright \ \mathscr{L}_{min}(\mathscr{A}) = \mathscr{L}(\mathscr{A}) \setminus (\Sigma \mathscr{L}(\mathscr{A}) \cup \mathscr{L}(\mathscr{A})\Sigma).$
- ▶ The language $\mathcal{L}(\mathscr{A})$ is regular (it is recognized by the power automaton $\mathcal{P}(\mathscr{A})$ with Q as an initial state and singletons as terminal ones).
- ▶ If \mathscr{A} has n states, then $\mathscr{P}(\mathscr{A})$ has at most $2^n 1$ states.
- ▶ $\mathcal{L}_{min}(A)$ is recognized by an automaton with $O(2^{3n})$ states, thus checking the finiteness takes $O(2^{6n})$.

Another Algorithm

Our characterization gives rise to the following algorithm FINCHECK(\(\alpha \):

- ▶ From a synchronizing $\mathscr{A} = \langle Q, \Sigma, \delta \rangle$ build the power automaton $\mathcal{P}(\mathscr{A}) = \langle Q, \Sigma, \delta \rangle$.
- ▶ For each T of Q do:
- ▶ For each H of Q with $T \subseteq H$ do:
- ▶ If $S(H) \cap S(T) \neq \emptyset$, then
 - ▶ If $\mathcal{R}(T) \neq \mathcal{R}(H)$, then exit and return NO
- ▶ Otherwise exit and return YES

The cost of this algorithm is $O(2^{2n}3^n)$, which is slightly better than the straight-forward one, but still exponential.

Find the complexity class of FINITENESS

Complexity of FINITENESS

- FINITENESS is in PSPACE (Pawel Gawrychowski).
- ▶ We have proved that FINITENESS is in co-NP-hard.

Complexity of FINITENESS

- FINITENESS is in PSPACE (Pawel Gawrychowski).
- We have proved that FINITENESS is in co-NP-hard.

Co-NP-Hardness: Strategy

Introduce an auxiliary problem

REACHABILITY

Input: A DFA $\mathcal{A} = \langle Q, \Sigma, \delta \rangle$ and a subset $H \subseteq Q$. Question: Is there a word $w \in \Sigma^*$ such that $Q \cdot w = H$?

- Reduce a particular set of instances I of REACHABILITY to instances of the complement of FINITENESS.
- Reduce any instance of SAT to an instance belonging to the set I.

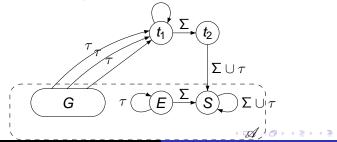
Co-NP-hardness: First Reduction

A particular class $\mathcal N$ of nilpotent automata $\mathscr A$ with a sink state S and a non-empty set $\mathcal E_{\mathscr A}$ of states E satisfying $E \cdot \Sigma = S$. We define the set I of instances of REACHABILITY:

$$I = \{ (\mathscr{A}, H) \mid \mathscr{A} \in \mathcal{N}, H = \{ S, E \}, E \in \mathcal{E}_{\mathscr{A}} \}.$$

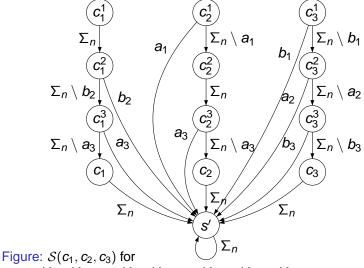
Proposition

Let $(\mathscr{A}, H) \in I$. Then there is a synchronizing automaton \mathscr{A}' such that the language $\mathscr{L}_{min}(\mathscr{A}')$ is infinite iff there exists $w \in \Sigma^+$ such that $Q \cdot w = H$. τ



- ▶ Let $\chi = \{c_1, ..., c_p\}$ be a set of clauses over n variables $X_1, ..., X_n$.
- ▶ Let $\Sigma_n = \{a_1, b_1, \dots, a_n, b_n\}$, $\gamma_i = \{a_i, b_i\}$.
- ▶ $x_i \in \gamma_i = \{a_i, b_i\}, \ \chi(x_i) = \{c_{i_1}, \dots, c_{i_k}\}$ is the set of clauses containing positive literal X_i if $x_i = a_i$, and of clauses containing negative literal $\neg X_i$ if $x_i = b_i$.
- ▶ We say that the set $x_1, ..., x_n$ with $x_i \in \gamma_i$ is a satisfiable assignment for χ iff:

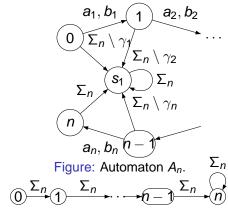
$$\bigcup_{i=1}^n \chi(\mathbf{x}_i) = \chi$$



 $c_1 = \neg X_2 \lor X_3, c_2 = X_3 \lor X_1, c_3 = X_2 \lor \neg X_1 \lor \neg X_3.$

Proposition

Let $S(c_1, ..., c_p)$ be constructed as above and let $w = x_1 ... x_n \in \Sigma_n^+$ with $x_i \in \gamma_i$ for i = 1, ..., n. Then w resets $S(c_1, ..., c_p)$ iff $x_1, ..., x_n$ is a satisfiable assignment.



Proposition

Figure: Automaton B_n

The automaton $\mathcal{V}_n = A_n \times B_n = \langle Q_{A,B}, \Sigma_n, \delta_{A,B} \rangle$ is nilpotent with the sink state $s = (s_1, n)$ and possesses a state e such that $e \cdot \Sigma_n = s$. Moreover $Q_{A,B} \cdot w = \{s, e\}$ iff $w = x_1 \dots x_n$ with $x_i \in \gamma_i$.

Proposition

Let c_1,\ldots,c_p be clauses over $n\geq 2$ variables. The automaton $\mathscr{A}=\mathcal{V}_n\times\mathcal{S}(c_1,\ldots,c_p)=\langle Q,\Sigma_n,\delta\rangle$ belongs to \mathcal{N} . Moreover, putting S=(s,s'), E=(e,s'), and $H=\{S,E\},$ we have $(\mathscr{A},H)\in I$ and there is a word $w\in\Sigma_n^+$ such that Q:w=H iff the boolean formula $\wedge_{i=1}^p c_i$ is satisfiable.

Theorem

The problem FINITENESS is co-NP-hard.

Open Problems

- ▶ What is the precise complexity class of FINITENESS? (Is it in co-NP? If for some $w \in \mathcal{S}(T)$, $\mathcal{R}(m(w)) \subsetneq \mathcal{R}(T)$, then we have to show that there is a $v \in \mathcal{R}(T) \setminus \mathcal{R}(m(w))$ such that |v| is polynomially bounded in the number of states in Q.)
- ► The characterization is given in terms of the power automaton. Is there a characterization in terms of the transition monoid of A?
- ▶ If $\mathcal{L}_{min}(\mathcal{A})$ is finite, give an upper bound for the number of generators $|\mathcal{L}_{min}(\mathcal{A})|$.
- ▶ If $\mathcal{L}_{min}(\mathscr{A})$ is finite, give a bound for the length of the longest word in $\mathcal{L}_{min}(\mathscr{A})$.
- ▶ Is the bound 3n 5 for the length of the shortest synchronizing word for the class **FG** precise?

THANK YOU!