Deterministically Isolating a Perfect Matching in Bipartite Planar Graphs

Joint work with Raghav Kulkarni (U. Chicago)

Sambuddha Roy (IBM Research, Delhi)

Samir Datta

sdatta@cmi.ac.in

Chennai Mathematical Institute

Introduction

- Introduction
- Historical Perspective

- Introduction
- Historical Perspective
- New Results

- Introduction
- Historical Perspective
- New Results
- Open Questions

Given an undirected graph G = (V, E) and a weight function $w : E \to N$.

Matching: A set of vertex disjoint edges

Given an undirected graph G = (V, E) and a weight function $w : E \to N$.

- Matching: A set of vertex disjoint edges
 - Matched Vertex: vertex incident on matched edge

Given an undirected graph G = (V, E) and a weight function $w : E \to N$.

- Matching: A set of vertex disjoint edges
 - Matched Vertex: vertex incident on matched edge
- Perfect Matching (pm): all vertices matched

Given an undirected graph G = (V, E) and a weight function $w : E \to N$.

- Matching: A set of vertex disjoint edges
 - Matched Vertex: vertex incident on matched edge
- Perfect Matching (pm): all vertices matched
- Min-Weight Perfect Matching: pm with min weight

Given an undirected graph *G*:

■ Decision: Does ∃ pm?

Given an undirected graph *G*:

- Decision: Does ∃ pm?
- Search: Find (the edges in) any one pm.

Given an undirected graph *G*:

- Decision: Does ∃ pm?
- Search: Find (the edges in) any one pm.
- Counting: What is #pm's?

Given an undirected graph *G*:

- Decision: Does ∃ pm?
- Search: Find (the edges in) any one pm.
- Counting: What is #pm's?
- Uniqueness: Is #pm's = 1?

General

- General
- Bipartite: Two-colourable = no odd cycles

- General
- Bipartite: Two-colourable = no odd cycles
- Planar: Embeddable on plane without edge intersection except at endpoints

- General
- Bipartite: Two-colourable = no odd cycles
- Planar: Embeddable on plane without edge intersection except at endpoints
- Bipartite Planar

- General
- Bipartite: Two-colourable = no odd cycles
- Planar: Embeddable on plane without edge intersection except at endpoints
- Bipartite Planar
- Small Genus: Embeddable on surface of small genus

Known Results

	General	Bipartite	Planar	Bip Planar
Decision	$P \cap RNC$	$P \cap RNC$	NC	NC (SPL)
Search	$P \cap RNC$	$P \cap RNC$	P ∩ RNC	NC (SPL)
Counting	#P	#P	NC	NC
Uniqueness	Р	NC	NC	NC (SPL)

Classical (and Sequential): e.g.

- Classical (and Sequential): e.g.
 - Augmenting Paths

- Classical (and Sequential): e.g.
 - Augmenting Paths
 - Contracting Blossoms

- Classical (and Sequential): e.g.
 - Augmenting Paths
 - Contracting Blossoms
- Randomized Parallel:

- Classical (and Sequential): e.g.
 - Augmenting Paths
 - Contracting Blossoms
- Randomized Parallel:
 - Karp-Upfal-Wigderson

- Classical (and Sequential): e.g.
 - Augmenting Paths
 - Contracting Blossoms
- Randomized Parallel:
 - Karp-Upfal-Wigderson
 - Mulmuley-Vazirani-Vazirani

- Classical (and Sequential): e.g.
 - Augmenting Paths
 - Contracting Blossoms
- Randomized Parallel:
 - Karp-Upfal-Wigderson
 - Mulmuley-Vazirani-Vazirani
 - Allender-Reinhardt-Zhou

- Classical (and Sequential): e.g.
 - Augmenting Paths
 - Contracting Blossoms
- Randomized Parallel:
 - Karp-Upfal-Wigderson
 - Mulmuley-Vazirani-Vazirani
 - Allender-Reinhardt-Zhou
- Parallel (Topologically restricted graphs)

- Classical (and Sequential): e.g.
 - Augmenting Paths
 - Contracting Blossoms
- Randomized Parallel:
 - Karp-Upfal-Wigderson
 - Mulmuley-Vazirani-Vazirani
 - Allender-Reinhardt-Zhou
- Parallel (Topologically restricted graphs)
 - Miller-Naor : Planar Bipartite

- Classical (and Sequential): e.g.
 - Augmenting Paths
 - Contracting Blossoms
- Randomized Parallel:
 - Karp-Upfal-Wigderson
 - Mulmuley-Vazirani-Vazirani
 - Allender-Reinhardt-Zhou
- Parallel (Topologically restricted graphs)
 - Miller-Naor : Planar Bipartite
 - Mahajan-Vardarajan: Planar/Low Genus Bipartite

- Classical (and Sequential): e.g.
 - Augmenting Paths
 - Contracting Blossoms
- Randomized Parallel:
 - Karp-Upfal-Wigderson
 - Mulmuley-Vazirani-Vazirani
 - Allender-Reinhardt-Zhou
- Parallel (Topologically restricted graphs)
 - Miller-Naor : Planar Bipartite
 - Mahajan-Vardarajan: Planar/Low Genus Bipartite
 - D-Kulkarni-Roy: Planar Bipartite

- Classical (and Sequential): e.g.
 - Augmenting Paths
 - Contracting Blossoms
- Randomized Parallel:
 - Karp-Upfal-Wigderson
 - Mulmuley-Vazirani-Vazirani
 - Allender-Reinhardt-Zhou
- Parallel (Topologically restricted graphs)
 - Miller-Naor : Planar Bipartite
 - Mahajan-Vardarajan: Planar/Low Genus Bipartite
 - D-Kulkarni-Roy: Planar Bipartite
- Parallel (Uniqueness): Hoang-Mahajan-Thierauf

[Mahajan-Varadarajan]

Fractional Solution via counting

- Fractional Solution via counting
 - \bullet $x:e\mapsto x_e$ s.t.

- Fractional Solution via counting
 - \bullet $x:e\mapsto x_e$ s.t.
 - $x_e = \frac{\#pm\ containing\ e}{\#pm}$

- Fractional Solution via counting
 - \bullet $x:e\mapsto x_e$ s.t.
 - $x_e = \frac{\#pm\ containing\ e}{\#pm}$
 - For any vertex u : $\sum_{e=(u,v)\in E} x_e = 1$

- Fractional Solution via counting
 - \bullet $x:e\mapsto x_e$ s.t.
 - $x_e = \frac{\#pm\ containing\ e}{\#pm}$
 - For any vertex u : $\sum_{e=(u,v)\in E} x_e = 1$
- Round the solution face-wise

- Fractional Solution via counting
 - \bullet $x:e\mapsto x_e$ s.t.
 - $x_e = \frac{\#pm\ containing\ e}{\#pm}$
 - For any vertex u : $\sum_{e=(u,v)\in E} x_e = 1$
- Round the solution face-wise
 - Find the smallest $x = x_{e_0}$ for $e_0 \in F$

- Fractional Solution via counting
 - \bullet $x:e\mapsto x_e$ s.t.
 - $x_e = \frac{\#pm\ containing\ e}{\#pm}$
 - For any vertex u : $\sum_{e=(u,v)\in E} x_e = 1$
- Round the solution face-wise
 - Find the smallest $x = x_{e_0}$ for $e_0 \in F$
 - $x_e \leftarrow x_e x$ if even # of vertices between e and e_0 .

- Fractional Solution via counting
 - \bullet $x:e\mapsto x_e$ s.t.
 - $x_e = \frac{\#pm\ containing\ e}{\#pm}$
 - For any vertex u : $\sum_{e=(u,v)\in E} x_e = 1$
- Round the solution face-wise
 - Find the smallest $x = x_{e_0}$ for $e_0 \in F$
 - $x_e \leftarrow x_e x$ if even # of vertices between e and e_0 .
 - $x_e \leftarrow x_e + x$ otherwise.

- Fractional Solution via counting
 - \bullet $x:e\mapsto x_e$ s.t.
 - $x_e = \frac{\#pm \ containing \ e}{\#pm}$
 - For any vertex u : $\sum_{e=(u,v)\in E} x_e = 1$
- Round the solution face-wise
 - Find the smallest $x = x_{e_0}$ for $e_0 \in F$
 - $x_e \leftarrow x_e x$ if even # of vertices between e and e_0 .
 - $x_e \leftarrow x_e + x$ otherwise.
- Coalesce faces across edges with $x_e = 0$.

- Fractional Solution via counting
 - \bullet $x:e\mapsto x_e$ s.t.
 - $x_e = \frac{\#pm \ containing \ e}{\#pm}$
 - For any vertex u : $\sum_{e=(u,v)\in E} x_e = 1$
- Round the solution face-wise
 - Find the smallest $x = x_{e_0}$ for $e_0 \in F$
 - $x_e \leftarrow x_e x$ if even # of vertices between e and e_0 .
 - $x_e \leftarrow x_e + x$ otherwise.
- Coalesce faces across edges with $x_e = 0$.
- Constant fraction of faces processed in parallel

Needed Tools:

#pm in Planar Graphs (Kastelyn/Little/Vazirani)

Needed Tools:

- #pm in Planar Graphs (Kastelyn/Little/Vazirani)
- Maximal Independence Set in Planar Graphs (He/Luby)

Needed Tools:

- #pm in Planar Graphs (Kastelyn/Little/Vazirani)
- Maximal Independence Set in Planar Graphs (He/Luby)

Extension to Small Genus Bipartite Graphs

Needed Tools:

- #pm in Planar Graphs (Kastelyn/Little/Vazirani)
- Maximal Independence Set in Planar Graphs (He/Luby)

Extension to Small Genus Bipartite Graphs

#pm in Small Genus Graphs (Galluccio-Loebl)

Needed Tools:

- #pm in Planar Graphs (Kastelyn/Little/Vazirani)
- Maximal Independence Set in Planar Graphs (He/Luby)

Extension to Small Genus Bipartite Graphs

- #pm in Small Genus Graphs (Galluccio-Loebl)
- Maximal Independence Set in graphs (Luby)

[Mulmuley-Vazirani-Vazirani]

Isolate:

- Isolate:
 - Assign small random weights to edges

- Isolate:
 - Assign small random weights to edges
 - min-weight pm unique (with high probability)

- Isolate:
 - Assign small random weights to edges
 - min-weight pm unique (with high probability)
- Extract:

- Isolate:
 - Assign small random weights to edges
 - min-weight pm unique (with high probability)
- Extract:
 - Determinant = Signed sum of matchings

- Isolate:
 - Assign small random weights to edges
 - min-weight pm unique (with high probability)
- Extract:
 - Determinant = Signed sum of matchings
 - if $M_{ij} = 2^{w_{ij}}$ then

[Mulmuley-Vazirani-Vazirani]

Isolate:

- Assign small random weights to edges
- min-weight pm unique (with high probability)

- Determinant = Signed sum of matchings
- if $M_{ij} = 2^{w_{ij}}$ then
- \bullet det(M) contains $\pm 2^w$ for each matching of weight w

[Mulmuley-Vazirani-Vazirani]

Isolate:

- Assign small random weights to edges
- min-weight pm unique (with high probability)

- Determinant = Signed sum of matchings
- if $M_{ij} = 2^{w_{ij}}$ then
- \bullet det(M) contains $\pm 2^w$ for each matching of weight w
- \blacksquare If \exists unique min-weight matching of weight W, then,

[Mulmuley-Vazirani-Vazirani]

Isolate:

- Assign small random weights to edges
- min-weight pm unique (with high probability)

- Determinant = Signed sum of matchings
- if $M_{ij} = 2^{w_{ij}}$ then
- \bullet det(M) contains $\pm 2^w$ for each matching of weight w
- lacktriangle If \exists unique min-weight matching of weight W, then,

[Mulmuley-Vazirani-Vazirani]

Isolate:

- Assign small random weights to edges
- min-weight pm unique (with high probability)

- Determinant = Signed sum of matchings
- if $M_{ij} = 2^{w_{ij}}$ then
- \bullet det(M) contains $\pm 2^w$ for each matching of weight w
- lacktriangle If \exists unique min-weight matching of weight W, then,
- $\bullet e \in \text{unique min-wt matching iff } W \text{ increases in } G e$

[Reinhardt-Allender]

Universal Isolation:

- Universal Isolation:
 - lacktriangle Isolate min-weight s-t paths instead of pm

- Universal Isolation:
 - lacktriangle Isolate min-weight s-t paths instead of pm
 - Most wt fns isolate min-wt path for given graph

- Universal Isolation:
 - lacktriangle Isolate min-weight s-t paths instead of pm
 - Most wt fns isolate min-wt path for given graph
 - lacktriangle Pick a poly sized set ${\mathcal W}$ of random weight functions

- Universal Isolation:
 - lacktriangle Isolate min-weight s-t paths instead of pm
 - Most wt fns isolate min-wt path for given graph
 - lacksquare Pick a poly sized set ${\mathcal W}$ of random weight functions
 - Whp $\forall G. |V(G)| = n. \exists w \in \mathcal{W} \text{ s.t. } w \text{ isolates in } G.$

- Universal Isolation:
 - lacktriangle Isolate min-weight s-t paths instead of pm
 - Most wt fns isolate min-wt path for given graph
 - lacksquare Pick a poly sized set ${\mathcal W}$ of random weight functions
 - Whp $\forall G. |V(G)| = n. \exists w \in \mathcal{W} \text{ s.t. } w \text{ isolates in } G.$
 - Therefore, $\exists W_0$, one of which isolates for all graphs

- Universal Isolation:
 - lacktriangle Isolate min-weight s-t paths instead of pm
 - Most wt fns isolate min-wt path for given graph
 - lacksquare Pick a poly sized set ${\mathcal W}$ of random weight functions
 - Whp $\forall G. |V(G)| = n. \exists w \in \mathcal{W} \text{ s.t. } w \text{ isolates in } G.$
 - Therefore, $\exists \mathcal{W}_0$, one of which isolates for all graphs
- Extraction:

- Universal Isolation:
 - lacktriangle Isolate min-weight s-t paths instead of pm
 - Most wt fns isolate min-wt path for given graph
 - ullet Pick a poly sized set ${\mathcal W}$ of random weight functions
 - Whp $\forall G.|V(G)|=n.\exists w\in\mathcal{W} \text{ s.t. } w \text{ isolates in } G.$
 - Therefore, $\exists \mathcal{W}_0$, one of which isolates for all graphs
- Extraction:
 - Double Counting: extension of Inductive Counting.

SPL/poly Algo for Matching

[Allender-Reinhardt-Zhou]

Universal Isolation: Similar to [Reinhardt-Allender]

SPL/poly Algo for Matching

[Allender-Reinhardt-Zhou]

- Universal Isolation: Similar to [Reinhardt-Allender]
- Extraction:

SPL/poly Algo for Matching

[Allender-Reinhardt-Zhou]

- Universal Isolation: Similar to [Reinhardt-Allender]
- Extraction:
 - Clever use of [Mahajan-Vinay] algo for determinant

Randomized Isolation via Isolation Lemma

- Randomized Isolation via Isolation Lemma
- Extraction:

- Randomized Isolation via Isolation Lemma
- Extraction:
 - ([MVV]) Matrix Inversion

- Randomized Isolation via Isolation Lemma
- Extraction:
 - ([MVV]) Matrix Inversion
 - ([RA]) Double Counting

Search = Isolation + Extraction

- Randomized Isolation via Isolation Lemma
- Extraction:
 - ([MVV]) Matrix Inversion
 - ([RA]) Double Counting
 - ([ARZ]) Using [Mahajan-Vinay]

Lemma ([Allender-D-Roy]) Given, an $n \times n$ complete Layered Grid Graph, one can assign small weights to its edges, s.t. any sub-digraph is min-unique.

Lemma ([Allender-D-Roy]) Given, an $n \times n$ complete Layered Grid Graph, one can assign small weights to its edges, s.t. any sub-digraph is min-unique.

Proof. Pair of paths enclosing simple region differ by area of region.

Lemma ([Allender-D-Roy]) Given, an $n \times n$ complete Layered Grid Graph, one can assign small weights to its edges, s.t. any sub-digraph is min-unique.

Proof. Pair of paths enclosing simple region differ by area of region.

Theorem ([ADR]) LGGR ∈ UL

Lemma ([Allender-D-Roy]) Given, an $n \times n$ complete Layered Grid Graph, one can assign small weights to its edges, s.t. any sub-digraph is min-unique.

Proof. Pair of paths enclosing simple region differ by area of region.

Theorem ([ADR]) LGGR \in UL

Proof. Extraction as in [Reinhardt-Allender].

Lemma ([Bourke-Tewari-Vinodchandran]) Given, an $n \times n$ complete grid graph, one can assign small weights to its edges, s.t. any sub-digraph is min-unique.

Lemma ([Bourke-Tewari-Vinodchandran]) Given, an $n \times n$ complete grid graph, one can assign small weights to its edges, s.t. any sub-digraph is min-unique.

Proof. Every simple cycle has weight equal to area (with a sign). \Box

Lemma ([Bourke-Tewari-Vinodchandran]) Given, an $n \times n$ complete grid graph, one can assign small weights to its edges, s.t. any sub-digraph is min-unique.

Proof. Every simple cycle has weight equal to area (with a sign).

Theorem ([BTV]) PlanarReachability ∈ UL

Proof. Extraction as in [Reinhardt-Allender].

Motivating the Problem

 ([Allender-Reinhardt-Zhou]) Extracting an isolated matching is easy.

Motivating the Problem

- ([Allender-Reinhardt-Zhou]) Extracting an isolated matching is easy.
- Deterministic Isolation possible in planar graphs (reachability).

Motivating the Problem

- ([Allender-Reinhardt-Zhou]) Extracting an isolated matching is easy.
- Deterministic Isolation possible in planar graphs (reachability).
- Can one deterministically isolate a perfect matching in planar graphs?

Problem Given a bipartite planar graph, construct a Perfect Matching.

Problem Given a bipartite planar graph, construct a Perfect Matching.

Theorem Bipartite Planar Matching is in SPL.

Problem Given a bipartite planar graph, construct a Perfect Matching.

Theorem Bipartite Planar Matching is in SPL.

Overview of proof:

Problem Given a bipartite planar graph, construct a Perfect Matching.

Theorem Bipartite Planar Matching is in SPL.

Overview of proof:

([D-Kulkarni-Limaye-Mahajan]) Embed G in grid, preserving
 Perfect Matchings (only for bipartite planar graphs)

Problem Given a bipartite planar graph, construct a Perfect Matching.

Theorem Bipartite Planar Matching is in SPL.

Overview of proof:

- ([D-Kulkarni-Limaye-Mahajan]) Embed G in grid, preserving
 Perfect Matchings (only for bipartite planar graphs)
- Find weight function: isolates a matching in each grid graph

Problem Given a bipartite planar graph, construct a Perfect Matching.

Theorem Bipartite Planar Matching is in SPL.

Overview of proof:

- \bullet ([D-Kulkarni-Limaye-Mahajan]) Embed G in grid, preserving Perfect Matchings (only for bipartite planar graphs)
- Find weight function: isolates a matching in each grid graph
- ([Allender-Reinhardt-Zhou]) Extract isolated matching

Problem Given a grid graph G=(V,E), "efficiently" construct a weight function $w:E\to [0,1,\dots,|V|^{O(1)}]$ such that the minimum weight perfect matching is unique.

Problem Given a grid graph G=(V,E), "efficiently" construct a weight function $w:E\to [0,1,\ldots,|V|^{O(1)}]$ such that the minimum weight perfect matching is unique.

Observation The symmetric difference of two pm's is a disjoint union of even cycles.

Problem Given a grid graph G=(V,E), "efficiently" construct a weight function $w:E\to [0,1,\ldots,|V|^{O(1)}]$ such that the minimum weight perfect matching is unique.

Observation The symmetric difference of two pm's is a disjoint union of even cycles.

Definition circ(C) is the difference in weights of alternating edges in cycle C.

Problem Given a grid graph G=(V,E), "efficiently" construct a weight function $w:E\to [0,1,\ldots,|V|^{O(1)}]$ such that the minimum weight perfect matching is unique.

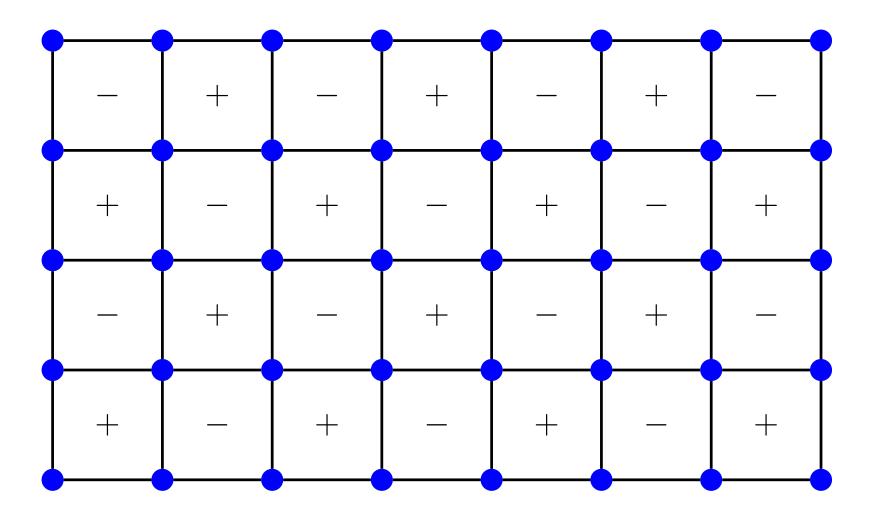
Observation The symmetric difference of two pm's is a disjoint union of even cycles.

Definition circ(C) is the difference in weights of alternating edges in cycle C.

Problem Give a weighing scheme such that $circ(C) \neq 0$ for every ("nice") cycle in grid graphs.

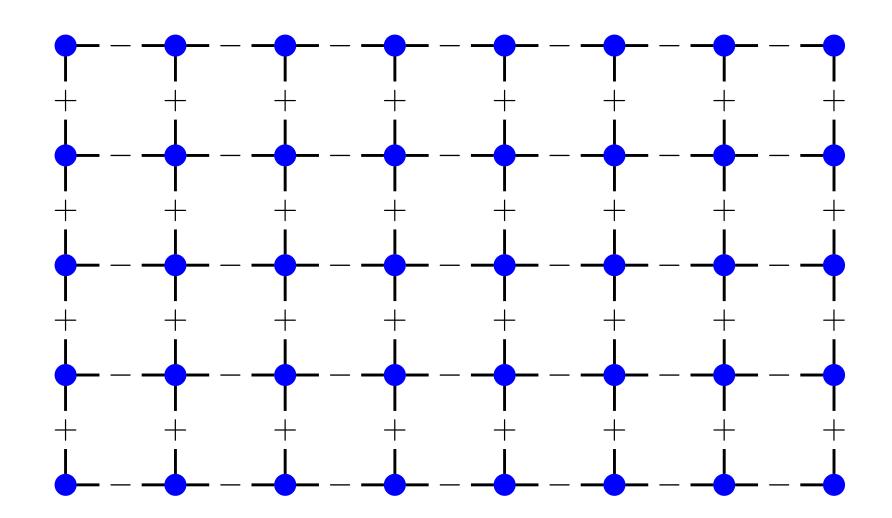
Signs of Blocks

Signs of Blocks



Signs of Edges

Signs of Edges



Block Circulation

• For a block B

$$circ(B) = \sum_{e \in B} sign(e)weight(e)$$

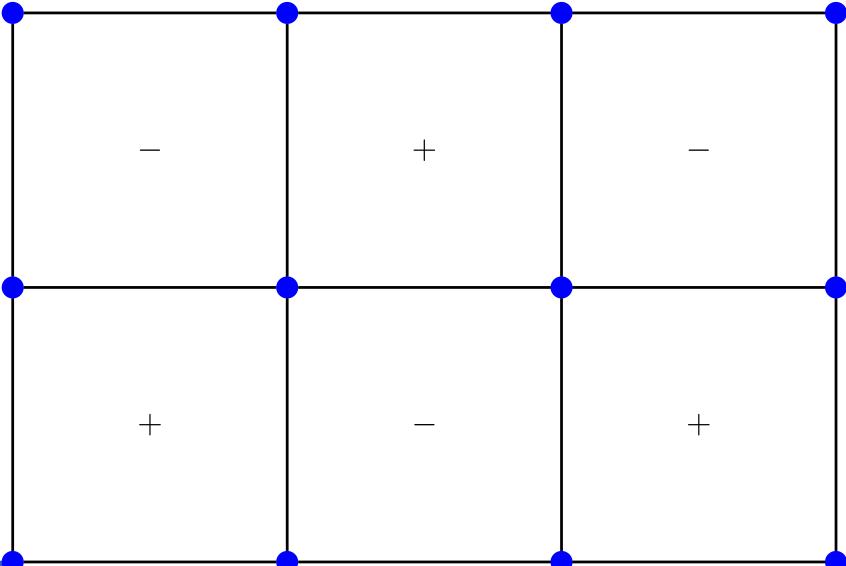
Block Circulation

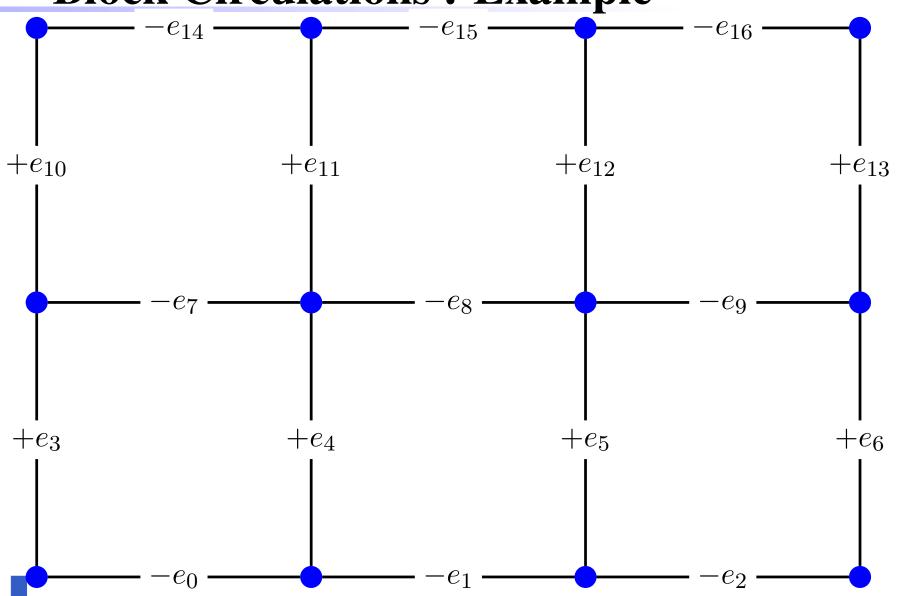
For a block B

$$circ(B) = \sum_{e \in B} sign(e)weight(e)$$

• For a cycle, $C = (e_0, e_1, \dots, e_l)$ (e_0 leftmost-topmost edge)

$$circ(C) = \sum_{i=0}^{l} (-1)^{i} weight(e_{i})$$





$$\begin{vmatrix} -(-e_{14}) & +(-e_{15}) & -(-e_{16}) \\ -(+e_{10}) & -(+e_{11}) & +(+e_{11}) & +(+e_{12}) & -(+e_{12}) & -(+e_{13}) \\ -(-e_{7}) & +(-e_{8}) & -(-e_{9}) \\ +(-e_{7}) & -(-e_{8}) & +(-e_{9}) \\ +(+e_{3}) & +(+e_{4}) & -(+e_{4}) & -(+e_{5}) & +(+e_{5}) & +(+e_{6}) \\ +(-e_{0}) & -(-e_{1}) & +(-e_{2}) \end{vmatrix}$$

$$\begin{array}{|c|c|c|c|c|}\hline -(-e_{14}) & +(-e_{15}) & -(-e_{16}) \\ \hline -(+e_{10}) & -(+e_{11}) & +(+e_{11}) & +(+e_{12}) & -(+e_{12}) & -(+e_{13}) \\ \hline -(-e_{7}) & +(-e_{8}) & -(-e_{9}) \\ \hline +(-e_{7}) & -(-e_{8}) & +(-e_{9}) \\ \hline +(+e_{3}) & +(+e_{4}) & -(+e_{4}) & -(+e_{5}) & +(+e_{5}) & +(+e_{6}) \\ \hline +(-e_{0}) & -(-e_{1}) & +(-e_{2}) \\ \hline \end{array}$$

Circulation Lemma

Lemma

$$|circ(C)| = \left| \sum_{B \in interior(C)} sign(B)circ(B) \right|$$

Circulation Lemma

Lemma

$$|circ(C)| = \left| \sum_{B \in interior(C)} sign(B)circ(B) \right|$$

Observation If circ(B) = sign(B) for each B, $circ(C) \neq 0$.

Circulation Lemma

Lemma

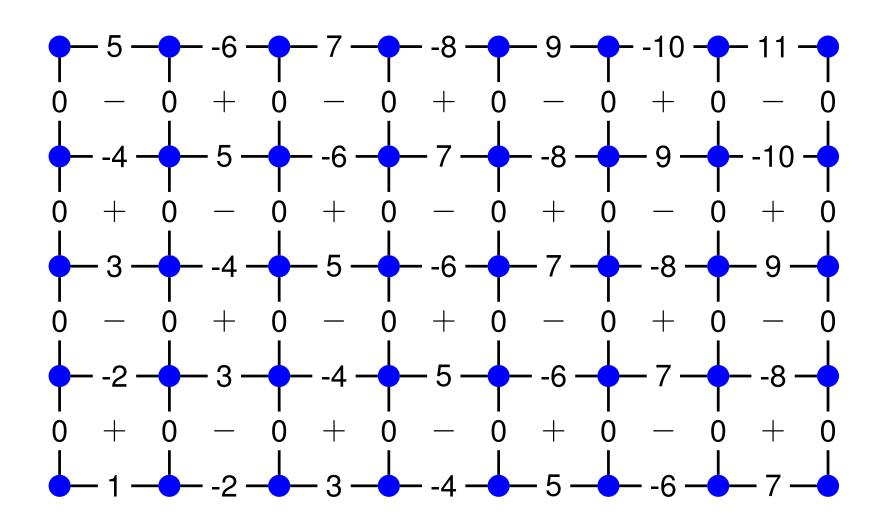
$$|circ(C)| = \left| \sum_{B \in interior(C)} sign(B)circ(B) \right|$$

Observation If circ(B) = sign(B) for each B, $circ(C) \neq 0$.

Hence Done!

Weighing Scheme

Weighing Scheme



Identify edges in non-zero (or odd) number of pm's

- Identify edges in non-zero (or odd) number of pm's
 - If graph is UPM, reduces to $det(A) \neq 0$ (or $\not\equiv 0 \mod 2$)

- Identify edges in non-zero (or odd) number of pm's
 - If graph is UPM, reduces to $det(A) \neq 0$ (or $\not\equiv 0 \mod 2$)
- Verify that identified edges form upm.

- Identify edges in non-zero (or odd) number of pm's
 - If graph is UPM, reduces to $det(A) \neq 0$ (or $\not\equiv 0 \mod 2$)
- Verify that identified edges form upm.
 - ullet Verify that edges form a matching M.

- Identify edges in non-zero (or odd) number of pm's
 - If graph is UPM, reduces to $det(A) \neq 0$ (or $\not\equiv 0 \mod 2$)
- Verify that identified edges form upm.
 - ullet Verify that edges form a matching M.
 - \blacksquare \exists an alternating cycle wrt M?

- Identify edges in non-zero (or odd) number of pm's
 - If graph is UPM, reduces to $det(A) \neq 0$ (or $\not\equiv 0 \mod 2$)
- Verify that identified edges form upm.
 - ullet Verify that edges form a matching M.
 - \blacksquare \exists an alternating cycle wrt M?
 - = reachability in auxiliary digraph

- Identify edges in non-zero (or odd) number of pm's
 - If graph is UPM, reduces to $det(A) \neq 0$ (or $\not\equiv 0 \mod 2$)
- Verify that identified edges form upm.
 - ullet Verify that edges form a matching M.
 - \blacksquare \exists an alternating cycle wrt M?
 - = reachability in auxiliary digraph
 - Arc (u, w) if $\exists v.(u, v)$ matched $\land (v, w)$ unmatched

Remove edges enclosing odd number of vertices

- Remove edges enclosing odd number of vertices
- Reduce ⊕pm to ⊕SpanningTree in some planar graph

- Remove edges enclosing odd number of vertices
- Reduce ⊕pm to ⊕SpanningTree in some planar graph
 - connect new vertex to all odd degree vertices

- Remove edges enclosing odd number of vertices
- Reduce ⊕pm to ⊕SpanningTree in some planar graph
 - connect new vertex to all odd degree vertices
 - Laplacian = Adjacency Matrix mod 2

- Remove edges enclosing odd number of vertices
- Reduce ⊕pm to ⊕SpanningTree in some planar graph
 - connect new vertex to all odd degree vertices
 - Laplacian = Adjacency Matrix mod 2
 - Apply Matrix Tree Theorem

- Remove edges enclosing odd number of vertices
- Reduce ⊕pm to ⊕SpanningTree in some planar graph
 - connect new vertex to all odd degree vertices
 - Laplacian = Adjacency Matrix mod 2
 - Apply Matrix Tree Theorem
- Compute

 SpanningTree in L ([BravermanKulkarniRoy])

- Remove edges enclosing odd number of vertices
- Reduce ⊕pm to ⊕SpanningTree in some planar graph
 - connect new vertex to all odd degree vertices
 - Laplacian = Adjacency Matrix mod 2
 - Apply Matrix Tree Theorem
- Compute

 SpanningTree in L

 ([BravermanKulkarniRoy])
- Verify that identified edges form a upm.

- Remove edges enclosing odd number of vertices
- Reduce ⊕pm to ⊕SpanningTree in some planar graph
 - connect new vertex to all odd degree vertices
 - Laplacian = Adjacency Matrix mod 2
 - Apply Matrix Tree Theorem
- Compute

 SpanningTree in L

 ([BravermanKulkarniRoy])
- Verify that identified edges form a upm.
 - Auxiliary digraph is outerplanar

- Remove edges enclosing odd number of vertices
- Reduce ⊕pm to ⊕SpanningTree in some planar graph
 - connect new vertex to all odd degree vertices
 - Laplacian = Adjacency Matrix mod 2
 - Apply Matrix Tree Theorem
- Compute

 SpanningTree in L

 ([BravermanKulkarniRoy])
- Verify that identified edges form a upm.
 - Auxiliary digraph is outerplanar
 - Reachability in outerplanar digraphs in L([Allender-Barrington-Chakraborty-D-Roy])

■ UPMtesting in Bipartite Planar Graphs ∈ SPL

- UPMtesting in Bipartite Planar Graphs ∈ SPL
- Constructing min-weight perfect matching in Bipartite Planar Graphs (with polynomially bounded weights) in SPL

- UPMtesting in Bipartite Planar Graphs ∈ SPL
- Constructing min-weight perfect matching in Bipartite Planar Graphs (with polynomially bounded weights) in SPL
- Constructing a min-weight spanning tree in planar graphs in SPL(Temperley's bijection)

- UPMtesting in Bipartite Planar Graphs ∈ SPL
- Constructing min-weight perfect matching in Bipartite Planar Graphs (with polynomially bounded weights) in SPL
- Constructing a min-weight spanning tree in planar graphs in SPL(Temperley's bijection)
- Constructing a Perfect Matching in Outerplanar Graphs in L.

Open Questions

Constructing Planar Matching in NC?

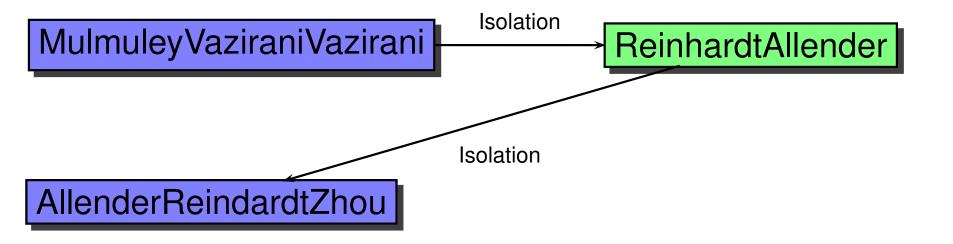
Open Questions

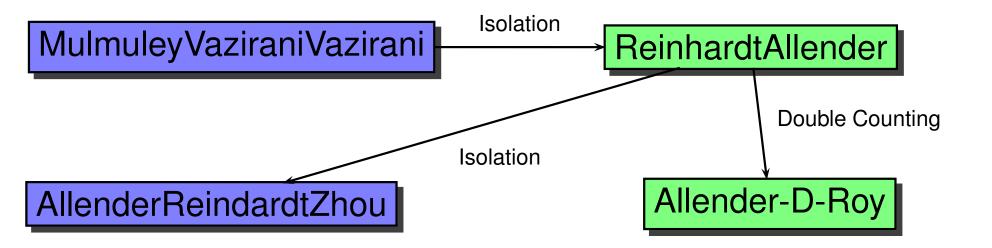
- Constructing Planar Matching in NC?
- Bipartite Matching in NC?

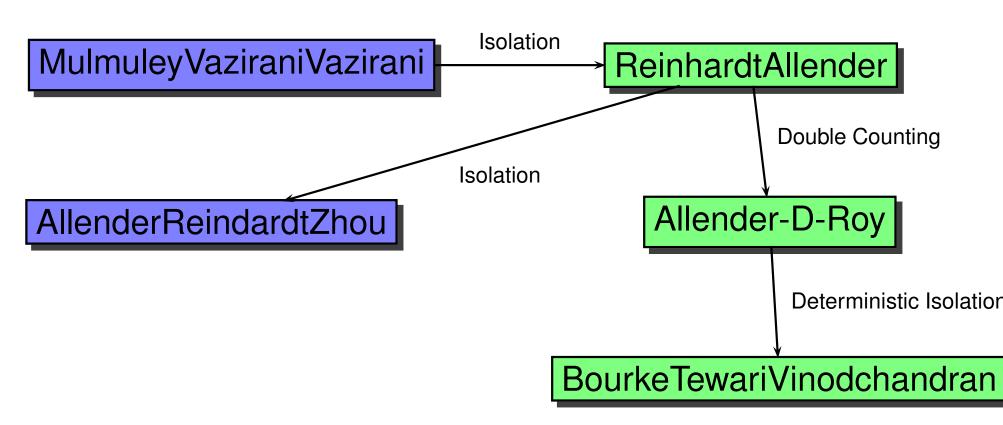
Open Questions

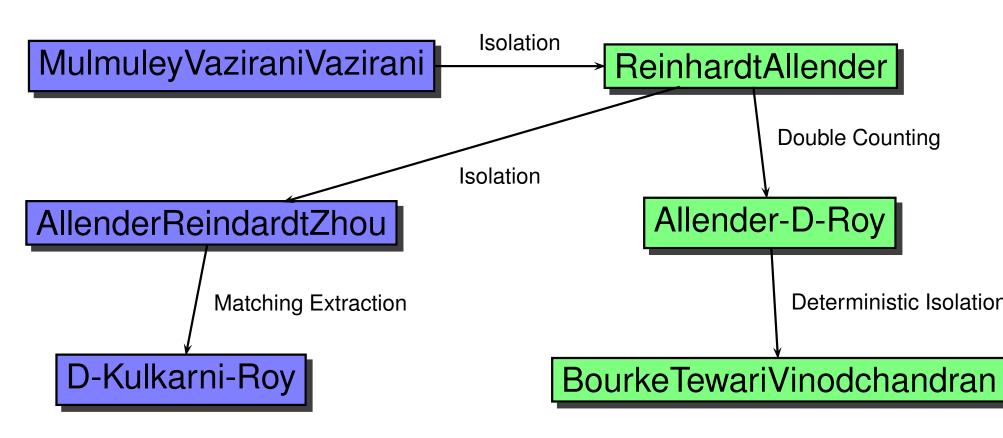
- Constructing Planar Matching in NC?
- Bipartite Matching in NC?
- Extract isolated max-weight perfect matching in NC?

MulmuleyVaziraniVazirani











Thank You!